Support of Weierstrass Quotients and Remainders

$\newcommand{\kk}{\mathbb{K}} \newcommand{\rr}{\mathbb{R}} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\supp}{supp}$Let $f$ be a power series in $n$ variables $x_1, \ldots, x_n$ over a field $\kk$. If $f$ is regular in $x_n$, i.e. $f(0, \ldots, 0, x_n) \not\equiv 0$, then there is a unique Weierstrass polynomial (with respect to $x_n$), say $w$, and an invertible power series $u$ associated to $f$ such… Continue reading Support of Weierstrass Quotients and Remainders

Polynomial division over valued fields – Part II (Stronger universal bases)

$\DeclareMathOperator{\gr}{gr} \DeclareMathOperator{\In}{In} \DeclareMathOperator{\Inn}{\overline{In}} \DeclareMathOperator{\Incoeff}{In_coeff} \DeclareMathOperator{\Inexp}{In_exp} \DeclareMathOperator{\ld}{Ld} \newcommand{\qq}{\mathbb{Q}} \newcommand{\kk}{\mathbb{K}} \DeclareMathOperator{\ord}{ord} \newcommand{\preceqeq}{\preceq_{\equiv}} \newcommand{\rnpos}{\mathbb{R}^n_{> 0}} \newcommand{\rnzero}{\mathbb{R}^n_{\geq 0}} \newcommand{\rr}{\mathbb{R}} \newcommand{\scrB}{\mathcal{B}} \newcommand{\scrK}{\mathcal{K}} \newcommand{\scrM}{\mathcal{M}} \DeclareMathOperator{\supp}{Supp} \newcommand{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \newcommand{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \newcommand{\znpos}{\mathbb{Z}^n_{> 0}} \newcommand{\znzero}{\mathbb{Z}^n_{\geq 0}} \newcommand{\zz}{\mathbb{Z}}$In this post we continue the discussion of polynomial division over valued fields from where we left at Part I. We keep the numberings of the environments (example,… Continue reading Polynomial division over valued fields – Part II (Stronger universal bases)

Polynomial division over valued fields – Part I (Chan-Maclagan’s Algorithm for Homogeneous Divisors)

$\DeclareMathOperator{\gr}{gr} \DeclareMathOperator{\In}{In} \DeclareMathOperator{\Inn}{\overline{In}} \DeclareMathOperator{\Incoeff}{In_coeff} \DeclareMathOperator{\Inexp}{In_exp} \DeclareMathOperator{\ld}{Ld} \newcommand{\qq}{\mathbb{Q}} \newcommand{\kk}{\mathbb{K}} \DeclareMathOperator{\ord}{ord} \newcommand{\preceqeq}{\preceq_{\equiv}} \newcommand{\rnpos}{\mathbb{R}^n_{> 0}} \newcommand{\rnzero}{\mathbb{R}^n_{\geq 0}} \newcommand{\rr}{\mathbb{R}} \newcommand{\scrB}{\mathcal{B}} \newcommand{\scrK}{\mathcal{K}} \newcommand{\scrM}{\mathcal{M}} \DeclareMathOperator{\supp}{Supp} \newcommand{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \newcommand{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \newcommand{\znpos}{\mathbb{Z}^n_{> 0}} \newcommand{\znzero}{\mathbb{Z}^n_{\geq 0}} \newcommand{\zz}{\mathbb{Z}}$Today we discuss division of polynomials over valued fields, i.e. fields equipped with a (real) valuation, and consider orderings on monomials which incorporate that valuation. The goal is… Continue reading Polynomial division over valued fields – Part I (Chan-Maclagan’s Algorithm for Homogeneous Divisors)

Polynomial division via initial terms – Part I (Homogenization)

\(\DeclareMathOperator{\In}{In} \DeclareMathOperator{\ld}{Ld} \DeclareMathOperator{\kk}{\mathbb{K}} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\rnpos}{\mathbb{R}^n_{> 0}} \DeclareMathOperator{\rnzero}{\mathbb{R}^n_{\geq 0}} \DeclareMathOperator{\rr}{\mathbb{R}} \DeclareMathOperator{\scrB}{\mathcal{B}} \DeclareMathOperator{\scrI}{\mathcal{I}} \DeclareMathOperator{\scrJ}{\mathcal{J}} \DeclareMathOperator{\supp}{Supp} \DeclareMathOperator{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \DeclareMathOperator{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \DeclareMathOperator{\znpos}{\mathbb{Z}^n_{> 0}} \DeclareMathOperator{\znzero}{\mathbb{Z}^n_{\geq 0}} \DeclareMathOperator{\zz}{\mathbb{Z}}\)This is a continuation of an earlier post on polynomial division where we looked at division of polynomials via cancelling the leading term with respect to a monomial order. Here we look at “initial… Continue reading Polynomial division via initial terms – Part I (Homogenization)

Division with power series

\(\DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\In}{In} \DeclareMathOperator{\ld}{Ld} \DeclareMathOperator{\kk}{\mathbb{K}} \DeclareMathOperator{\nd}{ND} \DeclareMathOperator{\rnpos}{\mathbb{R}^n_{> 0}} \DeclareMathOperator{\rnzero}{\mathbb{R}^n_{\geq 0}} \DeclareMathOperator{\rr}{\mathbb{R}} \DeclareMathOperator{\scrB}{\mathcal{B}} \DeclareMathOperator{\scrI}{\mathcal{I}} \DeclareMathOperator{\scrJ}{\mathcal{J}} \DeclareMathOperator{\supp}{Supp} \DeclareMathOperator{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \DeclareMathOperator{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \DeclareMathOperator{\znpos}{\mathbb{Z}^n_{> 0}} \DeclareMathOperator{\znzero}{\mathbb{Z}^n_{\geq 0}} \DeclareMathOperator{\zz}{\mathbb{Z}}\)In this post we look at division in the ring \(\hat R := \kk[[x_1, \ldots, x_n]]\) of formal power series over a field \(\kk\). In contrast to division in polynomial rings discussed in… Continue reading Division with power series

Polynomial division and Universal bases

Polynomial division \(\DeclareMathOperator{\In}{In} \DeclareMathOperator{\ld}{Ld} \DeclareMathOperator{\kk}{\mathbb{K}} \DeclareMathOperator{\rnpos}{\mathbb{R}^n_{> 0}} \DeclareMathOperator{\rnzero}{\mathbb{R}^n_{\geq 0}} \DeclareMathOperator{\rr}{\mathbb{R}} \DeclareMathOperator{\scrB}{\mathcal{B}} \DeclareMathOperator{\scrI}{\mathcal{I}} \DeclareMathOperator{\scrJ}{\mathcal{J}} \DeclareMathOperator{\supp}{Supp} \DeclareMathOperator{\znpos}{\mathbb{Z}^n_{> 0}} \DeclareMathOperator{\znzero}{\mathbb{Z}^n_{\geq 0}} \DeclareMathOperator{\zz}{\mathbb{Z}}\)In this post we talk about division with respect to polynomials in more than one variables, which is a pretty cute algorithm that changed the face of a big part of mathematics, via e.g. Gröbner bases which… Continue reading Polynomial division and Universal bases