Semi-normed and normed groups \(\newcommand{\mmm}{\mathfrak{m}} \newcommand{\qqq}{\mathfrak{q}} \newcommand{\rr}{\mathbb{R}} \newcommand{\rnneg}{\rr_{\geq 0}} \newcommand{\rpos}{\rr_{> 0}} \newcommand{\zz}{\mathbb{Z}} \newcommand{\znneg}{\zz_{\geq 0}} \)All groups are going to abelian with the group operation denoted by “+”. A filtration, a generalization of valuation, is a function \(\nu\) from a group \(G\) to \(\rr \cup \{\infty\}\) such that Filtrations are in one-to-one correspondence with ultrametric functions… Continue reading Notes (part 1): S. Bosch, U Güntzer and R. Remmert, Non-Archimedean Analysis
Category: Math
Polynomial division over valued fields – Part I (Chan-Maclagan’s Algorithm for Homogeneous Divisors)
$\DeclareMathOperator{\gr}{gr} \DeclareMathOperator{\In}{In} \DeclareMathOperator{\Inn}{\overline{In}} \DeclareMathOperator{\Incoeff}{In_coeff} \DeclareMathOperator{\Inexp}{In_exp} \DeclareMathOperator{\ld}{Ld} \newcommand{\qq}{\mathbb{Q}} \newcommand{\kk}{\mathbb{K}} \DeclareMathOperator{\ord}{ord} \newcommand{\preceqeq}{\preceq_{\equiv}} \newcommand{\rnpos}{\mathbb{R}^n_{> 0}} \newcommand{\rnzero}{\mathbb{R}^n_{\geq 0}} \newcommand{\rr}{\mathbb{R}} \newcommand{\scrB}{\mathcal{B}} \newcommand{\scrK}{\mathcal{K}} \newcommand{\scrM}{\mathcal{M}} \DeclareMathOperator{\supp}{Supp} \newcommand{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \newcommand{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \newcommand{\znpos}{\mathbb{Z}^n_{> 0}} \newcommand{\znzero}{\mathbb{Z}^n_{\geq 0}} \newcommand{\zz}{\mathbb{Z}}$Today we discuss division of polynomials over valued fields, i.e. fields equipped with a (real) valuation, and consider orderings on monomials which incorporate that valuation. The goal is… Continue reading Polynomial division over valued fields – Part I (Chan-Maclagan’s Algorithm for Homogeneous Divisors)
Polynomial division via initial terms – Part I (Homogenization)
\(\DeclareMathOperator{\In}{In} \DeclareMathOperator{\ld}{Ld} \DeclareMathOperator{\kk}{\mathbb{K}} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\rnpos}{\mathbb{R}^n_{> 0}} \DeclareMathOperator{\rnzero}{\mathbb{R}^n_{\geq 0}} \DeclareMathOperator{\rr}{\mathbb{R}} \DeclareMathOperator{\scrB}{\mathcal{B}} \DeclareMathOperator{\scrI}{\mathcal{I}} \DeclareMathOperator{\scrJ}{\mathcal{J}} \DeclareMathOperator{\supp}{Supp} \DeclareMathOperator{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \DeclareMathOperator{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \DeclareMathOperator{\znpos}{\mathbb{Z}^n_{> 0}} \DeclareMathOperator{\znzero}{\mathbb{Z}^n_{\geq 0}} \DeclareMathOperator{\zz}{\mathbb{Z}}\)This is a continuation of an earlier post on polynomial division where we looked at division of polynomials via cancelling the leading term with respect to a monomial order. Here we look at “initial… Continue reading Polynomial division via initial terms – Part I (Homogenization)
Division with power series
\(\DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\In}{In} \DeclareMathOperator{\ld}{Ld} \DeclareMathOperator{\kk}{\mathbb{K}} \DeclareMathOperator{\nd}{ND} \DeclareMathOperator{\rnpos}{\mathbb{R}^n_{> 0}} \DeclareMathOperator{\rnzero}{\mathbb{R}^n_{\geq 0}} \DeclareMathOperator{\rr}{\mathbb{R}} \DeclareMathOperator{\scrB}{\mathcal{B}} \DeclareMathOperator{\scrI}{\mathcal{I}} \DeclareMathOperator{\scrJ}{\mathcal{J}} \DeclareMathOperator{\supp}{Supp} \DeclareMathOperator{\znplusonezero}{\mathbb{Z}^{n+1}_{\geq 0}} \DeclareMathOperator{\znplusonepos}{\mathbb{Z}^{n+1}_{> 0}} \DeclareMathOperator{\znpos}{\mathbb{Z}^n_{> 0}} \DeclareMathOperator{\znzero}{\mathbb{Z}^n_{\geq 0}} \DeclareMathOperator{\zz}{\mathbb{Z}}\)In this post we look at division in the ring \(\hat R := \kk[[x_1, \ldots, x_n]]\) of formal power series over a field \(\kk\). In contrast to division in polynomial rings discussed in… Continue reading Division with power series
Polynomial division and Universal bases
Polynomial division \(\DeclareMathOperator{\In}{In} \DeclareMathOperator{\ld}{Ld} \DeclareMathOperator{\kk}{\mathbb{K}} \DeclareMathOperator{\rnpos}{\mathbb{R}^n_{> 0}} \DeclareMathOperator{\rnzero}{\mathbb{R}^n_{\geq 0}} \DeclareMathOperator{\rr}{\mathbb{R}} \DeclareMathOperator{\scrB}{\mathcal{B}} \DeclareMathOperator{\scrI}{\mathcal{I}} \DeclareMathOperator{\scrJ}{\mathcal{J}} \DeclareMathOperator{\supp}{Supp} \DeclareMathOperator{\znpos}{\mathbb{Z}^n_{> 0}} \DeclareMathOperator{\znzero}{\mathbb{Z}^n_{\geq 0}} \DeclareMathOperator{\zz}{\mathbb{Z}}\)In this post we talk about division with respect to polynomials in more than one variables, which is a pretty cute algorithm that changed the face of a big part of mathematics, via e.g. Gröbner bases which… Continue reading Polynomial division and Universal bases
Lüroth’s theorem (a “constructive” proof)
Lüroth’s theorem (Lüroth 1876 for \(k = \mathbb{C}\), Steinitz 1910 in general). If \(k \subseteq K\) are fields such that \(k \subseteq K \subseteq k(x)\), where \(x\) is an indeterminate over \(k\), then \(K = k(g)\) for some rational function \(g\) of \(x\) over \(k\). I am going to present a “constructive” proof of Lüroth’s… Continue reading Lüroth’s theorem (a “constructive” proof)
Publications
Overview Starting from my PhD thesis Towards a Bezout-type Theory of Affine Varieties written at University of Toronto under the supervision of Pierre Milman, my research in math falls under two broad themes: I am in particular interested in one of the simplest cases of the first problem: Book How many zeroes? Papers Compactification of… Continue reading Publications
Simplest singularity on non-algebraic normal Moishezon surfaces
A classical question in complex analytic geometry is to understand when a given analytic space is algebraic (i.e. analytification of an algebraic scheme). A necessary condition for this to hold is that the transcendence degree of the field of global meromorphic functions must be equal to the dimension of the space, i.e. the space has… Continue reading Simplest singularity on non-algebraic normal Moishezon surfaces